

OpenOFDM: Synthesizable, Modular Verilog Implementation of 802.11 OFDM Decoder

OpenOFDM is a open source Verilog implementation of 802.11 OFDM decoder.
Highlights are:

	Supports 802.11a/g (all bit rates) and 802.11n (20MHz BW, MCS 0 - 7)

	Modular design, easy to extend

	Fully synthesizable, tested on USRP N210

Contents:

	Overview
	Top Level Module

	Project Structure

	Sample File

	Packet Detection
	Power Trigger

	Short Preamble Detection

	Frequency Offset Correction
	Coarse CFO Correction

	Fine CFO Correction

	Symbol Alignment
	FFT

	Sub-carrier Equalization and Pilot Correction
	Sub-carrier Structure

	Sub-Carrier Equalization

	Residual Frequency Offset Correction

	Decoding
	Demodulation

	Deinterleaving

	Viterbi Decoding

	Descrambling

	SIGNAL and HT-SIG
	Legacy SIGNAL

	HT-SIG

	Setting Registers

	Verilog Hacks
	Magnitude Estimation

	Phase Estimation

	Rotation

	Integration with USRP
	USRP N2x0 FPGA Overview

	Enable Custom Modules

Overview

Once the RF signals are captured and down-converted to baseband, the decoding
pipeline starts, including:

	Packet detection

	Center frequency offset correction

	FFT

	Channel gain estimation

	Demodulation

	Deinterleaving

	Convolutional decoding

	Descrambling

This documentation walks through the decoding pipeline and explains how each
step is implemented in OpenOFDM.

Top Level Module

[image: _images/dot11.png]
Fig. 1 Dot11 Core Schematic Symbol

The top level module of OpenOFDM is dot11.v. Fig. 1 shows
its input/output pins. It takes I/Q samples as input, and output 802.11 packet
data bytes and various PHY properties.

Table 1 Dot11 Module Pinout

	Port Name
	Port Width
	Direction
	Description

	clock
	1
	Input
	Rising edge clock

	enable
	1
	Input
	Module enable (active high)

	reset
	1
	Input
	Module reset (active high)

	set_stb
	1
	Input
	Setting register strobe

	set_addr
	8
	Input
	Setting register address

	set_data
	32
	Input
	Setting register value

	sample_in
	32
	Input
	High 16 bit I, low 16 bit Q

	sample_in_stb
	1
	Input
	Sample input strobe

	pkt_begin
	1
	Output
	Signal begin of a packet

	pkt_ht
	1
	Output
	HT (802.11n) or legacy (802.11a/g) packet

	pkt_rate
	8
	Output
	For HT, the lower 7 bits is MCS. For legacy, the lower 4 bits is the rate bits in SIGNAL

	pkt_len
	16
	Output
	Packet length in bytes

	byte_out_stb
	1
	Output
	Byte out strobe

	byte_out
	8
	Output
	Byte value

	fcs_out_stb
	1
	Output
	FCS output strobe

	fcs_ok
	1
	Output
	FCS correct (high) or wrong (low)

Project Structure

In the verilog sub-directory, you will find the Verilog implementations
of various modules. The implementations were originally targeted for the Xilinx
Spartan 3A-DSP 3400 FPGA inside the USRP N210 device, thus there are various
dependences to Xilinx libraries and USRP code base. In particular:

	verilog/Xilinx contains the Xilinx specific libraries

	verilog/coregen contains generated IP cores from Xilinx ISE

	verilog/usrp2 contains USRP specific modules

However, the project is self-contained and is ready for simulation using Icarus
Verilog [http://iverilog.icarus.com/] tool chain, including iverilog and
vvp.

The scripts directory contains various Python scripts that:

	Generate look up tables (gen_atan_lut.py, gen_rot_lut.py,
gen_deinter_lut.py)

	Convert binary I/Q file into text format so it can be read in Verilog using
readmemh.

	Consolidate sample files by removing silent signals (condense.py).

	Test each step of decoding process (test.py)

	802.11 decoder in Python for cross validation (decode.py)

It also contains a modified copy of the CommPy [https://github.com/veeresht/CommPy] library.

The test.py script is for cross validation between the Python decoder
and OpenOFDM decoder. It first uses the decode.py script to decode the
sample file and stores the expected output of each step. It then performs
Verilog simulation using vvp and compare the Verilog output against the
expected output step by step.

The testing_inputs directory contains various sample files collected in
a conducted or over the air setup. These files covers all the bit rates (legacy
and HT) supported in OpenOFDM.

Sample File

Throughout this documentation we will be using a sample file that contains the
I/Q samples of a 802.11a packet at 24 Mbps (16-QAM). It’ll be helpful to use a
interactive iPython session and exercise various steps discussed in the
document.

Download the sample file from here, the data
can be loaded as follows:

import scipy

wave = scipy.fromfile('samples.dat', dtype=scipy.int16)
samples = [complex(i, q) for i, q in zip(wave[::2], wave[1::2])]

Packet Detection

802.11 OFDM packets start with a short PLCP Preamble sequence to help the
receiver detect the beginning of the packet. The short preamble duration is
8 us. At 20 MSPS sampling rate, it contains 10 repeating sequence of 16 I/Q
samples, or 160 samples in total. The short preamble also helps the receiver
for coarse frequency offset correction , which will be discussed separately in
Frequency Offset Correction.

Power Trigger

	Module: power_trigger.v

	Input: sample_in (16B I + 16B Q), sample_in_strobe (1B)

	Output: trigger (1B)

	Setting Registers: SR_POWER_THRES, SR_POWER_WINDOW,
SR_SKIP_SAMPLE.

The core idea of detecting the short preamble is to utilize its repeating nature
by calculating the auto correlation metric. But before that, we need to make sure
we are trying to detect short preamble from “meaningful” signals. One example of
“un-meaningful” signal is constant power levels, whose auto correlation metric
is also very high (nearly 1) but obviously does not represent packet beginning.

The first module in the pipeline is the power_trigger.v. It takes the I/Q
samples as input and asserts the trigger signal during a potential packet
activity. Optionally, it can be configured to skip the first certain number of
samples before detecting a power trigger. This is useful to skip the spurious
signals during the initial hardware stabilization phase.

The logic of the power_trigger module is quite simple: after skipping
certain number of initial samples, it waits for significant power increase and
triggers the trigger signal upon detection. The trigger signal is
asserted until the power level is smaller than a threshold for certain number of
continuous samples.

Short Preamble Detection

	Module: sync_short.v

	Input: sample_in (16B I + 16B Q), sample_in_strobe (1B)

	Output: short_preamble_detected (1B)

	Setting Registers: SR_MIN_PLATEAU

[image: _images/short_preamble.png]
Fig. 2 In-Phase of Short Preamble.

Fig. 2 shows the in-phase of the beginning of a packet.
Some repeating patterns can clearly be seen. We can utilize this characteristic
and calculate the auto correlation metric of incoming signals to detect such
pattern:

(1)\[corr[i] = \frac{\left\lVert\sum_{i=0}^{N}{S[i]*\overline{S[i+16]}}\right\rVert}
{\sum_{i=0}^{N}{S[i]*\overline{S[i]}}}\]

where \(S[i]\) is the \(\langle I,Q \rangle\) sample expressed as a
complex number, and \(\overline{S[i]}\) is its conjugate, \(N\) is the
correlation window size. The correlation
reaches 1 if the incoming signal is repeating itself every 16 samples. If the
correlation stays high for certain number of continuous samples, then a short
preamble can be declared.

[image: _images/corr.png]
Fig. 3 Auto Correlation of the Short Preamble samples (N=48).

To plot Fig. 3, load the samples (see Sample File), then:

from matplotlib import pyplot as plt

fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
ax[0].plot([s.real for s in samples[:500]], '-bo')
ax[1].plot([abs(sum([samples[i+j]*samples[i+j+16].conjugate()
 for j in range(0, 48)]))/
 sum([abs(samples[i+j])**2 for j in range(0, 48)])
 for i in range(0, 500)], '-ro')
plt.show()

Fig. 3 shows the auto correlation value of the samples in
Fig. 2. We can see that the correlation value is almost 1
during the short preamble period, but drops quickly after that. We can also see
that for the very first 20 samples or so, the correlation value is also very
high. This is because the silence also repeats itself (at arbitrary interval)!
That’s why we first use the power_trigger module to detect actual packet
activity and only perform short preamble detection on non-silent samples.

A straight forward implementation would require
both multiplication and division. However, on FPGAs devision consumes a lot of
resources so we really want to avoid it. In current implementation, we use a
fixed threshold (0.75) for the correlation so that we can use bit-shift to
achieve the purpose. In particular, we calculate numerator>>1 + numerator>>2
and compare that with the denominator. For the correlation window size, we set
\(N=16\).

[image: _images/sync_short.png]
Fig. 4 sync_short Module Diagram

Fig. 4 shows the internal module diagram of the sync_short
module. In addition to the number of consecutive samples with correlation
larger than 0.75, the sync_short module also checks if the incoming signal
has both positive (> 25%) and negative (> 25%) samples to further eliminate
false positives (e.g., when the incoming signals are constant non-zero values).
Again, the thresholds (25%) are chosen so that we can use only bit-shifts for
the calculation.

Frequency Offset Correction

This paper [1] explains why
frequency offset occurs and how to correct it. In a nutshell, there are two
types of frequency offsets. The first is called Carrier Frequency Offset
(CFO) and is caused by the difference between the transmitter and receiver’s
Local Oscillator (LO). This symptom of this offset is a phase rotation of
incoming I/Q samples (time domain). The second is Sampling Frequency Offset
(SFO) and is caused by the sampling effect. The symptom of this offset is a
phase rotation of constellation points after FFT (frequency domain).

The CFO can be corrected with the help of short preamble (Coarse) long preamble
(Fine). And the SFO can be corrected using the pilot sub-carriers in each OFDM
symbol. Before we get into how exactly the correction is done. Let’s see
visually how each correction step helps in the final constellation plane.

[image: _images/cons.png]
Fig. 5 Constellation Points Without Any Correction

[image: _images/cons_w_coarse.png]
Fig. 6 Constellation Points With Only Coarse Correction

[image: _images/cons_w_coarse_fine.png]
Fig. 7 Constellation Points With both Coarse and Fine Correction

[image: _images/cons_w_coarse_fine_pilot.png]
Fig. 8 Constellation Points With Coarse, Fine and Pilot Correction

Fig. 5 to Fig. 8 shows the constellation points of
a 16-QAM modulated 802.11a packet.

Coarse CFO Correction

The coarse CFO can be estimated using the short preamble as follows:

(1)\[\alpha_{ST} = \frac{1}{16}\angle(\sum_{i=0}^{N-1}\overline{S[i]}S[i+16])\]

where \(\angle(\cdot)\) is the phase of complex number and \(N \le 144
(160 - 16)\) is the subset of short preambles utilized. The intuition is that the
phase difference between S[i] and S[i+16] represents the accumulated CFO over 16
samples.

After getting \(\alpha_{ST}\), each following I/Q samples (starting from
long preamble) are corrected as:

(2)\[S'[m] = S[m]e^{-jm\alpha_{ST}}, m = 0, 1, 2, \ldots\]

In OpenOFDM, the coarse CFO is calculated in the sync_short module, and we
set \(N=64\). The prod_avg in Fig. 4 is fed into a
moving_avg module with window size set to 64.

Fine CFO Correction

A finer estimation of the CFO can be obtained with the help of long training
sequence inside the long preamble.

The long preamble contains two identify training sequence (64 samples each at 20
MSPS), the phase offset can be calculated as:

(3)\[\alpha_{LT} = \frac{1}{64}\angle(\sum_{i=0}^{63}\overline{S[i]}S[i+64])\]

This step is omitted in OpenOFDM due to the limited resolution of phase
estimation and rotation in the look up table.

	[1]	Sourour, Essam, Hussein El-Ghoroury, and Dale McNeill. “Frequency Offset Estimation and Correction in the IEEE 802.11 a WLAN.” Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th. Vol. 7. IEEE, 2004.

Symbol Alignment

	Module: sync_long.v

	Input: I (16), Q (16), phase_offset (32), short_gi (1)

	Output: long_preamble_detected (1), fft_re (16), fft_im (16)

After detecting the packet, the next step is to determine precisely where each
OFDM symbol starts. In 802.11, each OFDM symbol is 4 \(\mu s\) long. At 20 MSPS
sampling rate, this means each OFDM symbol contains 80 samples. The task is to
group the incoming streaming of samples into 80-sample OFDM symbols. This can be
achieved using the long preamble following the short preamble.

[image: _images/training.png]
Fig. 9 802.11 OFDM Packet Structure (Fig 18-4 in 802.11-2012 Std)

As shown in Fig. 9, the long preamble duration is 8 \(\mu s\) (160
samples), and contains two identical long training sequence (LTS), 64 samples
each. The LTS is known and we can use cross correlation [https://en.wikipedia.org/wiki/Cross-correlation] to find it.

The cross validation score at sample \(i\) can be calculated as follows.

(1)\[Y[i] = \sum_{k=0}^{63}(S[i+k]\overline{H[k]})\]

where \(H\) is the 64 sample known LTS in time domain, and can be found in
Table L-6 in 802.11-2012 std (index 96 to
159). A numpy readable file of the LTS (64 samples) can be found here, and can be read like this:

>>> import numpy as np
>>> lts = np.loadtxt('lts.txt').view(complex)

[image: _images/lts.png]
Fig. 10 Long Preamble and Cross Correlation Result

To plot Fig. 10, load the data file (see Sample File), then:

in scripts/decode.py
import decode
import numpy as np
from matplotlib import pyplot as plt

fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
ax[0].plot([c.real for c in samples][:500])
lts is from the above code snippet
ax[1].plot([abs(c) for c in np.correlate(samples, lts, mode='valid')][:500], '-ro')
plt.show()

Fig. 10 shows the long preamble samples and also the result of cross
correlation. We can clearly see two spikes corresponding the two LTS in long
preamble. And the spike width is only 1 sample which shows exactly the beginning
of each sequence. Suppose the sample index if the first spike is \(N\), then
the 160 sample long preamble starts at sample \(N-32\).

This all seems nice and dandy, but as it comes to Verilog implementation, we
have to make a compromise.

From (1) we can see for each sample, we need to perform 64
complex number multiplications, which would consume a lot FPGA resources.
Therefore, we need to reduce the size of cross validation. The idea is to only
use a portion instead of all the LTS samples.

[image: _images/match_size.png]
Fig. 11 Cross Correlation with Various Size (8, 16, 32, 64)

Fig. 11 can be plotted as:

lp = decode.LONG_PREAMBLE

fig, ax = plt.subplots(nrows=5, ncols=1, sharex=True)
ax[0].plot([c.real for c in lp])
ax[1].plot([abs(c) for c in np.correlate(lp, lts[:8], mode='valid')], '-ro')
ax[2].plot([abs(c) for c in np.correlate(lp, lts[:16], mode='valid')], '-ro')
ax[3].plot([abs(c) for c in np.correlate(lp, lts[:32], mode='valid')], '-ro');
ax[4].plot([abs(c) for c in np.correlate(lp, lts, mode='valid')], '-ro')
plt.show()

Fig. 11 shows the long preamble (160 samples) as well as cross
validation with different size. It can be seen that using the first 16 samples
of LTS is good enough to exhibit two narrow spikes. Therefore, OpenOFDM use
cross correlation of first 16 samples of LTS for symbol alignment. To confirm,
Fig. 12 shows the cross correlation of the first 16 samples of LTS
on the actual packet. The two spikes are not as obvious as the ones in
Fig. 10, but are still clearly visible.

[image: _images/lts_16.png]
Fig. 12 Cross Validation using the First 16 Samples of LTS

To find the two spikes, we keep a record of the max correlation sample for the
first 64 samples (since the first spike is supposed to be at the 32th sample).
Similarly, we also keep a record of the max correlation sample for the second 64
samples. For further eliminate false positives, we also check if the two spike
sample indexes are \(64 \pm 1\) apart.

FFT

Now we have located the start of each OFDM symbol, the next task is to perform
FFT on the last 64 data samples inside each symbol. For this we utilize the
XFFT core [https://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf]
generated by Xilinx ISE. Depend on if short guard interval (SGI) [https://en.wikipedia.org/wiki/Guard_interval] is used, the first 16 or 8
samples of each OFDM symbol need to be skipped.

But before performing FFT, we need to first apply the frequency offset
correction (see Frequency Offset Correction). This is achieved via the rotate module
(see Rotation).

Sub-carrier Equalization and Pilot Correction

	Module: equalizer.v

	Input: I (16), Q (16)

	Output: I (16), Q (16)

This is the first module in frequency domain. There are two main tasks:
sub-carrier gain equalization and correcting residue phase offset using the
pilot sub-carriers.

Sub-carrier Structure

The basic channel width in 802.11a/g/n is 20 MHz, which is further divided into
64 sub-carriers (0.3125 MHz each).

[image: _images/subcarrier.png]
Fig. 13 Sub-carriers in 802.11 OFDM

Fig. 13 shows the sub-carrier structure of the 20 MHz band. 52
out of 64 sub-carriers are utilized, and 4 out of the 52 (-7, -21, 7, 21)
sub-carriers are used as pilot sub-carrier and the remaining 48 sub-carriers
carries data. As we will see later, the pilot sub-carriers can be used to
correct the residue frequency offset.

Each sub-carrier carries I/Q modulated information, corresponding to the output
of 64 point FFT from sync_long.v module.

Sub-Carrier Equalization

[image: _images/lts_fft.png]
Fig. 14 FFT of the Perfect and Two Actual LTS

To plot Fig. 14:

lts1 = samples[11+160:][32:32+64]
lts2 = samples[11+160:][32+64:32+128]
fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True);
ax[0].plot([c.real for c in np.fft.fft(lts)], '-bo');
ax[1].plot([c.real for c in np.fft.fft(lts1)], '-ro');
ax[2].plot([c.real for c in np.fft.ff t(lts2)], '-ro');
plt.show()

Fig. 14 shows the FFT of the perfect LTS and the two actual LTSs
in the samples. We can see that each sub-carrier exhibits different magnitude
gain. In fact, they also have different phase drift. The combined effect of
magnitude gain and phase drift (known as channel gain) can clearly be seen in
the I/Q plane shown in Fig. 15.

[image: _images/lts_fft_iq.png]
Fig. 15 FFT in I/Q Plane of The Actual LTS

To map the FFT point to constellation points, we need to compensate for the
channel gain. This can be achieved by normalize the data OFDM symbols using the
LTS. In particular, the mean of the two LTS is used as channel gain (\(H\)):

(1)\[H[i] = \frac{1}{2}(LTS_1[i] + LTS_2[i])\times L[i], i \in
[-26, 26]\]

where \(L[i]\) is the sign of the LTS sequence:

(2)\[\begin{split}L_{-26,26} = \{
&1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1,\\
&1, -1, 1, -1, 1, 1, 1, 1, 0, 1, -1, -1, 1, 1, -1, 1, -1, 1,\\
&-1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1\}\end{split}\]

And the FFT output at sub-carrier \(i\) is normalized as:

(3)\[Y[i] = \frac{X[i]}{H[i]}, i \in [-26, 26]\]

where \(X[i]\) is the FFT output at sub-carrier \(i\).

[image: _images/raw_fft.png]
Fig. 16 FFT Without Normalization

[image: _images/norm_fft.png]
Fig. 17 FFT With Normalization

Fig. 16 and Fig. 17 shows the FFT before and after
normalization using channel gain.

Residual Frequency Offset Correction

We can see from Fig. 17 that the FFT output is tilted slightly.
This is caused by residual frequency offset that was not compensated during the
coarse CFO correction step.

This residual CFO can be corrected either by Fine CFO Correction, or/and by the
pilot sub-carriers. Ideally we want to do both, but since the fine CFO is
usually beyond the resolution of the phase look up table, we skip it in the
sync_long.v module and only rely on the pilot sub-carriers.

Regardless of the data sub-carrier modulation, the four pilot sub-carriers (-21,
-7, 7, 21) always contains BPSK modulated pseudo-random binary sequence.

The polarity of the pilot sub-carriers varies symbol to symbol. For 802.11a/g,
the pilot pattern is:

(4)\[\begin{split}p_{0,\ldots,126} = \{
&1, 1, 1, 1,-1,-1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1,-1,-1, 1, 1,-1, 1, 1,-1, 1,\\
&1, 1, 1, 1, 1,-1, 1, 1, 1,-1, 1, 1,-1,-1, 1, 1, 1,-1, 1,-1,-1,-1, 1,-1,\\
&1,-1,-1, 1,-1,-1, 1, 1, 1, 1, 1,-1,-1, 1, 1,-1,-1, 1,-1, 1,-1, 1,\\
&1,-1,-1,-1, 1, 1,-1,-1,-1,-1, 1,-1,-1, 1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1,\\
&1,-1,-1,-1,-1,-1, 1,-1, 1, 1,-1, 1,-1, 1, 1, 1,-1,-1, 1,-1,-1,-1, 1, 1,\\
&1,-1,-1,-1,-1,-1,-1,-1\}\end{split}\]

And the pilot sub-carriers at OFDM symbol \(n\) (starting at 0 from the first
symbol after the long preamble) is then:

(5)\[P^{(n)}_{-21, -7, 7, 21} = \{p_{n\%127}, p_{n\%127}, p_{n\%127}, -p_{n\%127}\}\]

For 802.11n at 20MHz bandwidth with single spatial stream, the n’th pilot
sub-carriers are:

(6)\[P^{(n)}_{-21, -7, 7, 21} = \{\Psi_{n\%4}, \Psi_{(n+1)\%4}, \Psi_{(n+2)\%4},
\Psi_{(n+3)\%4}\}\]

And:

(7)\[\Psi_{0, 1, 2, 3} = \{1, 1, 1, -1\}\]

In other words, the pilot sub-carries of the first few symbols are:

(8)\[\begin{split}P^{(0)}_{-21, -7, 7, 21} = \{1, 1, 1, -1\}\\
P^{(1)}_{-21, -7, 7, 21} = \{1, 1, -1, 1\}\\
P^{(2)}_{-21, -7, 7, 21} = \{1, -1, 1, 1\}\\
P^{(3)}_{-21, -7, 7, 21} = \{-1, 1, 1, 1\}\\
P^{(4)}_{-21, -7, 7, 21} = \{1, 1, 1, -1\}\\
\cdots\end{split}\]

For other configurations (e.g., spatial stream, bandwidth), the pilot
sub-carrier pattern can be found in Section 20.3.11.10 in
802.11-2012 std.

The residual phase offset at symbol \(n\) can then be estimated as:

(9)\[\theta_n = \angle(\sum_{i\in\{-21, -7, 7, 21\}}\overline{X^{(n)}[i]}\times P^{(n)}[i]\times H[i])\]

Combine this phase offset and the previous channel gain correction together, the
adjustment to symbol \(n\) is:

(10)\[Y^{(n)}[i] = \frac{X^{(n)}[i]}{H[i]}e^{j\theta_n}\]

[image: _images/pilot_fft.png]
Fig. 18 Residual CFO Correction Using Pilot Sub-Carriers

Fig. 18 shows the effect of correcting the residual CFO using
pilot sub-carriers. Each sub-carrier can then be mapped to constellation points
easily.

In OpenOFDM, the above tasks are implemented by the equalizer.v module.
It first stores the first LTS, and then calculates the mean of the two LTS and
store it as channel gain.

For each incoming OFDM symbol, it first obtains the polarity of the pilot
sub-carriers in current symbol, then calculates the residual CFO using the pilot
sub-carriers and also performs the channel gain correction.

Decoding

Now we have corrected the residual CFO and also have corrected the channel gain,
the next step is to map the FFT output to actual data bits. This is the reverse
process of encoding a packet.

	demodulation: complex number to bits

	deinterleaving: shuffle the bits inside each OFDM symbol

	Convolution decoding: remove redundancy and correct potential bit errors

	Descramble.

Step 1 and 3 depend on the modulation and coding scheme, which can be obtained
from the SIGNAL field. The SIGNAL field is encoded in the first OFDM symbol
after the long preamble and is always BPSK modulated regardless of the actual
modulation. Recall that in
802.11a/g, one OFDM symbol contains 48 data sub-carriers, which corresponds to
48 data bits in BPSK scheme. The SIGNAL field is also convolutional encoded at
1/2 rate so there are 24 actual data bits in the SIGNAL field.

Next, we first go through the decoding process and then explain the format of
both legacy (802.11a/g) and the HT (802.11n) SIGNAL format.

Demodulation

	Module: demodulate.v

	Input: rate (7), cons_i (16), cons_q (16)

	Output: bits (6)

This step maps the complex number in the FFT plane into bits. Fig. 19
shows the constellation encoding schemes for BPSK, QPSK, 16-QAM and 64-QAM.
also supported in OpenOFDM.

[image: _images/mod.png]
Fig. 19 BPSK, QPSK, 16-QAM and 64-QAM Constellation Bit Encoding

Inside each OFDM symbol, each sub-carrier is mapped into 1, 2, 4 or 6 bits
depending on the modulation.

Deinterleaving

	Module: deinterleave.v

	Input: rate (7), in_bits (6)

	Output: out_bits (2), erase (2)

Inside each OFDM symbol, the encoded bits are interleaved. To understand how the
block interleaver works, first we need to define a few parameters. Here we only
consider 802.11a/g and 802.11n single spatial stream mode.

Table 2 Modulation Dependent Parameters (802.11a/g)

	Modulation
	Coding Rate
	Bit-Rate
	\(N_{BPSC}\)
	\(N_{CBPS}\)
	\(N_{DBPS}\)

	BPSK
	1/2
	6
	1
	48
	24

	BPSK
	3/4
	9
	1
	48
	36

	QPSK
	1/2
	12
	2
	96
	48

	QPSK
	3/4
	18
	2
	96
	72

	16-QAM
	1/2
	24
	4
	192
	96

	16-QAM
	3/4
	36
	4
	192
	144

	64-QAM
	2/3
	48
	6
	288
	192

	64-QAM
	3/4
	54
	6
	288
	216

where:

	\(N_{BPSC}\): number of bits per sub-carrier

	\(N_{CBPS}\): number of coded bits per OFDM symbol

	\(N_{DBPS}\): number of data bits per OFDM symbol

Let \(s=max(N_{BPSC}/2,1)\) be the number of bits along the real (or
imaginary) axis in the constellation plane. The interleaver is based on writing
the data bits in rows and reading them out in columns.

Table 3 Row and Columns of 802.11 Interleaver

	
	802.11a/g
	802.11n 20MHz

	\(N_{COL}\)
	16
	13

	\(N_{ROW}\)
	\(3\times N_{BPSC}\)
	\(4\times N_{BPSC}\)

The interleaving process involves two permutations. Let \(k\) be the index
of the bit index before the first permutation, \(i\) be the index after the
first but before the second permutation, and \(j\) be the index after the
second permutation.

The first permutation (\(k\rightarrow i\)) of interleaving ensures adjacent
code bits are mapped to non-adjacent sub-carriers, and is defined as:

(1)\[i = N_{ROW}\times(k \bmod N_{COL}) + \lfloor \frac{k}{N_{COL}}\rfloor\]

And the second permutation (\(i\rightarrow j\)) ensures that adjacent code
bits are mapped alternatively to less or more significant bits in constellation
point, and is defined as:

(2)\[j = s\times\lfloor\frac{i}{s}\rfloor + (i+N_{CBPS}-\lfloor N_{COL}\times\frac{i}{N_{CBPS}}\rfloor)\bmod s\]

The deinterleaving process involves two permutations as well to reverse the two
permutations in interleaving process.

First, to reverse the second permutation ((2)):

(3)\[i = s\times\lfloor\frac{j}{s}\rfloor + (j+\lfloor N_{COL}\times\frac{j}{N_{CBPS}}\rfloor)\bmod s\]

And to reverse the first permutation:

(4)\[k = N_{COL}\times i-(N_{CBPS}-1)\times\lfloor \frac{i}{N_{ROW}} \rfloor\]

In OpenOFDM, the deinterleaving is performed using look up table. First, the
bits in one OFDM symbol are stored in a two-port RAM. Then the bits are read
according to the look up table.

[image: _images/deinter_lut.png]
Fig. 20 Deinterleave Look Up Table

As shown in Fig. 20, the raw bits of one OFDM symbol is first
stored in the permutation buffer. The buffer entry is 6-bit wide to accommodate
64-QAM. For other modulations, only the lower \(N_{BPSC}\) bits are valid.
The buffer has 48 (802.11a/g) or 52 (802.11n) rows depend on whether HT is used.

After all the bits inside one OFDM symbol are written to the permutation buffer,
we first get the base address of the sub look up table for current modulation
scheme. For 802.11a/g, the key is the rate bits inside the SIGNAL field. For
802.11n, the key is \(mcs+16\). The next step is to read the look up table
to determine which bits to output next.

The lookup table entry is 22 bits wide, which contains:

	null_a/null_b: whether the current bit is valid (for punctuation in
Viterbi decoding next)

	addra/bita: the first bit to output

	addrb/bitb: the second bit to output

	out_stb: output strobe

	done: end of sub-LUT for current modulation

Note that the deinterleave module output 2 bits at each clock cycle. The look up
table is generated by scripts/gen_deinter_lut.py.

For non 1/2 modulation rates, we need to compensate for the punctuation in the
deinterleaving step to make following Viterbi decoding easier. This is achieved
by inserting dummy bits (via the null_a/null_b bits) accordingly. The exact
punctuation pattern can be found in Figure 18-9 in 802.11-2012 std.

Viterbi Decoding

The transmitted bits are convolutional encoded which adds redundancy to the bits
and help the receiver fix bit errors. The decoding can be performed using
Viterbi algorithm [https://en.wikipedia.org/wiki/Viterbi_algorithm]. We
utilize the Viterbi IP core provided by Xilinx. It is not free but you can
obtain a evaluation license. The limitation of the evaluation license is that
the core will stop working after certain time (several hours) after the FPGA is
powered up.

The Viterbi core handles most of the heavy lifting and we only need to feed it
with the de-punctured bits output from the deinterleave module.

For SIGNAL or HT-SIG fields, the decoding stops here. For data symbols, the last
step is to descramble.

Descrambling

The scrambling step at the transmitter side is to avoid long consecutive
sequences of 0s or 1s. The scrambling and descrambling process can be realized
using the same logic.

[image: _images/scrambler.png]
Fig. 21 Scrambler/Descrambler Logic

Suppose the current input bit is \(B_n\), the scrambled bit \(B^s_n\) and the
internal state of the scrambler is updated as follows:

(5)\[\begin{split}B^s_n &\leftarrow X_n^1 \oplus B_n\\
X_{n+1}^1 &\leftarrow X_n^7 \oplus X_n^4\\
X_{n+1}^i &\leftarrow X_n^{i-1}, i = 2, 3,\ldots, 7\end{split}\]

where \(X^i_n\) is the scrambler state before the nth input bit, \(n=0,
1, 2,\ldots\).

At the transmitter side, for each packet, the scrambler is initialized with
pseudo random value. The very first 7 bits of the data bits is preset to zero
before scrambling, so that the receiver can estimate the value using the
scrambled bits.

Now let’s see how the receiver recovers the initial state of the transmitter’s
scrambler. There are two ways to interpret this.

First, we can calculate the initial state. Since the first 7 un-scrambled bits
(\(B_0\) to \(B_6\)) are all zeros, the scrambled bits can be obtained
by:

(6)\[\begin{split}B^s_0 &= X_0^7 \oplus X_0^4\\
B^s_1 &= X_1^7 \oplus X_1^4 = X_0^6 \oplus X_0^3\\
B^s_2 &= X_2^7 \oplus X_2^4 = X_0^5 \oplus X_0^2\\
B^s_3 &= X_3^7 \oplus X_3^4 = X_0^4 \oplus X_0^1\\
B^s_4 &= X_4^7 \oplus X_4^4 = X_0^3 \oplus B^s_0\\
B^s_5 &= X_5^7 \oplus X_5^4 = X_0^2 \oplus B^s_1\\
B^s_6 &= X_6^7 \oplus X_6^4 = X_0^1 \oplus B^s_2\\\end{split}\]

From which we can reverse calculating the value of \(X\) as follows:

(7)\[\begin{split}X_0^1 &= B^s_6 \oplus B^s_2\\
X_0^2 &= B^s_5 \oplus B^s_1\\
X_0^3 &= B^s_4 \oplus B^s_0\\
X_0^4 &= B^s_3 \oplus X_0^1 = B^s_3 \oplus B^s_6 \oplus B^s_2\\
X_0^5 &= B^s_2 \oplus X_0^2 = B^s_2 \oplus B^s_5 \oplus B^s_1\\
X_0^6 &= B^s_1 \oplus X_0^3 = B^s_1 \oplus B^s_4 \oplus B^s_0\\
X_0^7 &= B^s_0 \oplus X_0^4 = B^s_0 \oplus B^s_3 \oplus B^s_6 \oplus B^s_2\\\end{split}\]

This interpretation does not lead to efficient Verilog implementation since we
need to first buffer the first 7 bits, calculate the initial state and then
descramble from the first 7 bits again.

The second interpretation is that: the first 7 scrambled bits are the state
after scrambling the 7 bits. In other words, we have:

(8)\[\begin{split}X_7^7 &= B^s_0\\
X_7^6 &= B^s_1\\
X_7^5 &= B^s_2\\
X_7^4 &= B^s_3\\
X_7^3 &= B^s_4\\
X_7^2 &= B^s_5\\
X_7^1 &= B^s_6\\\end{split}\]

For instance, take a look at \(X_7^7\),

(9)\[X_7^7 = X_6^6 = \ldots = X_1^1 = X_0^7 \oplus X_0^4\]

We also know that:

(10)\[\begin{split}B^s_0 &= X_0^7 \oplus X_0^4 \oplus B_0\\
&= X_0^7 \oplus X_0^4 \oplus 0 \\
&= X_0^7 \oplus X_0^4\end{split}\]

Therefore \(X_7^7 = B^s_0\). This way we directly get the state to
descramble the next bit \(B^s_7\), resulting a very simple Verilog
implementation.

SIGNAL and HT-SIG

The first OFDM symbol after long preamble is the SIGNAL field, which contains
the modulation rate and length of the packet. These information are needed to
determine how many OFDM symbols to decode and how to decode them.

Legacy SIGNAL

[image: _images/signal.png]
Fig. 22 SIGNAL field of 802.11a/g

For 802.11a/g, the SIGNAL field is 24-bits, which expands to 48 bits after 1/2
convolutional encoding and fits precisely into one OFDM symbol.
Fig. 22 shows the format of SIGNAL.

In OpenOFDM, we check the following properties to make sure the SIGNAL field is
decoded properly.

	Parity. Bit 17 is a even parity bit of the previous 17 bits.

	Reserved bit. Bit 4 is reserved, and should be 0.

	Tail bits. The last 6 bits should be all 0.

If any checking failed, we stop decoding immediately and wait for next power
trigger.

HT-SIG

For backward compatibility, 802.11n shares the same preambles and SIGNAL field
with 802.11a/g so that legacy stations can also decode the SIGNAL field and
back-off accordingly (see NAV [https://en.wikipedia.org/wiki/Network_allocation_vector]).

[image: _images/ht_ppdu.png]
Fig. 23 PPDU Format of 802.11n

As shown in Fig. 23, there are actually three PPDU formats
supported in 802.11n. The legacy mode is identical to 802.11a/g. The HT-mixed
mode provides backward compatibility, and is mostly widely used. Finally, the
HT-greenfield mode is pure 802.11n and does not have backward compatibility.
OpenOFDM supports HT-mixed mode only.

In HT-mixed mode, the rate field in SIGNAL (or L-SIG) is always 6 Mbps, and the
LENGTH is adjusted accordingly so that it reflects the actual packet air
duration.

From receiver’s point of view, after decoding the SIGNAL field, if the rate is
not 6 Mbps, then this is a 802.11a/g packet and we continue to decoding the DATA
bits. However, if the rate is 6 Mpbs, then we need to first check if this is a
802.11n packet by detecting the HT-SIG field. This is achieved by examine the
BPSK constellation points of the OFDM symbol after SIGNAL.

[image: _images/ht_sig_bpsk.png]
Fig. 24 Constellation Points of HT-SIG vs. SIGNAL

As shown in Fig. 24, HT-SIG is BPSK modulated using the
Quadrature component instead of the In-phase component. Therefore, we check the
number of samples in which the quadrature component is larger than in-phase, and
claim a HT-SIG if enough such samples are detected (4 in OpenOFDM).

The HT-SIG field spans two OFDM symbols, and has 48 data bits (96 coded bits) in
total. The constellation points are rotated 90 degrees clockwise before
decoding.

[image: _images/ht_sig.png]
Fig. 25 HT-SIG Format

Fig. 25 shows the format of HT-SIG. The following fields are checked
in OpenOFDM:

	MCS: only supports 0 - 7.

	CBW 20/40: channel bandwidth. OpenOFDM only supports 20 MHz channel (0).

	Reserved: must be 0.

	STBC: number of space time block code [https://en.wikipedia.org/wiki/Space%E2%80%93time_block_code]. OpenOFDM
only supports 00 (no STBC).

	FEC coding: OpenOFDM only supports BCC (0).

	Short GI: whether short guard interval is used.

	Number of extension spatial streams: only 0 is supported.

	CRC: checksum of previous 34 bits.

	Tail bits: must all be 0.

[image: _images/ht_sig_crc.png]
Fig. 26 CRC Calculation of HT-SIG

Fig. 26 shows the logic to calculate the CRC in HT-SIG. The
shift registers \(C_0,\ldots,C_7\) are initialized with all ones. For each
data bit \(m_0,\ldots,m_{33}\), the shift register is updated as:

(1)\[\begin{split}C^{i+1}_7 &= C^{i}_6\\
C^{i+1}_6 &= C^{i}_5\\
C^{i+1}_5 &= C^{i}_4\\
C^{i+1}_4 &= C^{i}_3\\
C^{i+1}_3 &= C^{i}_2\\
C^{i+1}_2 &= C^{i}_1 \oplus C^{i}_7 \oplus m_i\\
C^{i+1}_1 &= C^{i}_0 \oplus C^{i}_7 \oplus m_i\\
C^{i+1}_0 &= C^{i}_7 \oplus m_i\\\end{split}\]

The CRC is then \(\overline{C^{34}_7},\ldots,\overline{C^{34}_0}\). Note the
bits are inverted.

The next OFDM symbol after HT-SIG is HT short preamble, which is skipped in
OpenOFDM. The following OFDM symbol contains HT long training sequence, which
replaces the legacy channel gain inside equalizer.v module. The rest
decoding logic is similar to 802.11a/g, except the number of data sub-carriers
is adjusted from 48 to 52.

Setting Registers

	Module: usrp/setting_reg.v

	Input: set_stb, set_addr and set_data

	Output: out, changed

To enable dynamic configuration of decoding parameters at runtime, the USRP N210
provides the setting register mechanism. Most modules in OpenOFDM have three
common inputs for such purpose:

	set_stb (1): asserts high when the setting data is valid

	set_addr (8): register address (256 registers possible in total)

	set_data (32): the register value

Here is a list of setting registers in OpenOFDM.

Table 4 List of Setting Registers in OpenOFDM.

	Name
	Addr
	Module
	Bit Width
	Default Value
	Description

	SR_POWRE_THRES
	3
	power_trigger.v
	16
	100
	Threshold for power trigger

	SR_POWER_WINDOW
	4
	power_trigger.v
	16
	80
	Number of samples to wait before reset the trigger signal

	SR_SKIP_SAMPLE
	5
	power_trigger.v
	32
	5000000
	Number of samples to skip initially

	SR_MIN_PLATEAU
	6
	sync_short.v
	32
	100
	Minimum number of plateau samples to declare a short preamble

Verilog Hacks

Because of the limited capability of FPGA computation, compromises often need to
made in the actual Verilog implementation. The most used techniques include
quantization and look up table. In OpenOFDM, these approximations are used.

Magnitude Estimation

	Module: complex_to_mag.v

	Input: i (32), q (32)

	Output: mag (32)

In the sync_short module, we need to calculate the magnitude of the
prod_avg, whose real and imagine part are both 32-bits. To avoid 32-bit
multiplication, we use the Magnitude Estimator Trick from DSP Guru [https://dspguru.com/dsp/tricks/magnitude-estimator/]. In particular, the
magnitude of complex number \(\langle I, Q\rangle\) is estimated as:

(1)\[M \approx \alpha*max(|I|, |Q|) + \beta*min(|I|, |Q|)\]

And we set \(\alpha = 1\) and \(\beta = 0.25\) so that only simple
bit-shift is needed.

[image: _images/complex_to_mag_wave.png]
Fig. 27 Waveform of complex_to_mag Module

Fig. 27 shows the waveform of the complex_to_mag
module. In the first clock cycle, we calculate abs_i and abs_q. In the
second cycle, max and min are determined. In the final cycle, the
magnitude is calculated.

Phase Estimation

	Module: phase.v

	Input: i (32), q (32)

	Output: phase (32)

	Note: The returned phase is scaled up by 512 (i.e., \(int(\theta *512)\))

When correcting the frequency offset, we need to estimate the phase of a complex
number. The right way of doing this is probably using the CORDIC [https://dspguru.com/dsp/faqs/cordic/] algorithm. In OpenOFDM, we use look up
table.

More specifically, we calculate the phase using the \(arctan\) function.

(2)\[\theta = \angle(\langle I, Q\rangle) = arctan(\frac{Q}{I})\]

The overall steps are:

	Project the complex number to the \([0, \pi/4]\) range, so that the
\(tan(\theta)\) range is \([0, 1]\).

	Calculate \(arctan\) (division required)

	Looking up the quantized \(arctan\) table

	Project the phase back to the \([-\pi, \pi)\) range

Here we use both quantization and look up table techniques.

Step 1 can be achieved by this transformation:

(3)\[\langle I, Q\rangle \rightarrow \langle max(|I|, |Q|), min(|I|, |Q|)\rangle\]

In the lookup table used in step 3, we use \(int(tan(\theta)*256)\) as the
key, which effectively maps the \([0.0, 1.0]\) range of \(tan\) function
to the integer range of \([0, 256]\). In other words, we quantize the
\([0, \pi/4]\) quadrant into 256 slices.

This \(arctan\) look up table is generated using the
scripts/gen_atan_lut.py script. The core logic is as follows:

	1
2
3
4
5
6
7

	SIZE = 2**8
SCALE = SIZE*2
data = []
for i in range(SIZE):
 key = float(i)/SIZE
 val = int(round(math.atan(key)*SCALE))
 data.append(val)

Note that we also scale up the \(arctan\) values to distinguish adjacent
values. This also systematically scale up \(\pi\) in OpenOFDM. In fact,
\(\pi\) is defined as \(1608=int(\pi*512)\) in
verilog/common_params.v.

The generated lookup table is stored in the verilog/atan_lut.coe
file (see COE File Syntax [https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgn_r_coe_file_syntax.htm]).
Refer to this guide [https://www.xilinx.com/itp/xilinx10/isehelp/cgn_p_memed_single_block.htm] on
how to create a look up table in Xilinx ISE. The generated module is stored in
verilog/coregen/atan_lut.v.

Rotation

	Module: /verilog/rotate.v

	Input: i (16), q (16), phase (32)

	Output: out_i (16), out_q (16)

	Note: The input phase is assumed to be scaled up by 512.

To rotate a complex number \(C=I+jQ\) by \(\theta\) degree, we can
multiply it by \(e^{j\theta}\), as shown in (4).

(4)\[C' = (I+jQ)\times(\cos(\theta)+j\sin(\theta))\]

Again, this can be done using the CORDIC algorithm. But similar to
Phase Estimation, we use the look up table.

[image: _images/quadrant.png]
Fig. 28 Quadrant in I/Q Plane

As shown in Fig. 28, we split the I/Q plane into 8 quadrants,
\(\pi/4\) each. To avoid storing nearly duplicate entries in the table, we
first map the phase to be rotated (\([-\pi, \pi]\)) into the \([0,
\pi/4]\) range. Next, since the incoming phase is scaled up by 512, each quadrant
is further split into \(402=int(\pi/4*512)\) sectors. And the
\(\cos(\theta)\) and \(\sin(\theta)\) values (scaled up by 2048) are
stored in the look up table. The table is generated by the
scripts/gen_rot_lut.py.

Integration with USRP

OpenOFDM was originally developed on Ettus Research USRP N210 platform. This
short guide explains how to modify the USRP N210’s FPGA code base to
accommodate OpenOFDM.

USRP N2x0 FPGA Overview

The top level model of USRP N2x0 (N200 and N210) can be found in
top/N2x0/u2plus.v. It instantiates the u2plus_core module, which
contains the core modules such as the receiver and transmit chain. In
particular, the receive chain includes rx_frontend, ddc_chain and
vita_rx_chain. Similarly, the transmit chain includes vita_tx_chain,
duc_chain and tx_frontend.

The code base contains placeholder modules (dsp_rx_glue and dsp_tx_glue)
for extension. These modules are controlled by Verilog compilation flags and by
default they are simply pass-through and have no effect on the signal processing
at all.

Enable Custom Modules

Take the receive chain as an example, inside dsp_rx_glue module, it checks
the RX_DSP0_MODULE macro and instantiates it if found. The macro can be
defined in a customized Makefile. Make a copy of the
top/N2x0/Makefile.N210R4, name it to
top/N2x0/Makefile.N210R4.custom. And then make these changes.

	Change BUILD_DIR to $(abspath build$(ISE)-N210R4-custom). This will
create a new build directory for our custom build.

	Comment out CUSTOM_SRCS and CUSTOM_DEFS. We will define them in a
separate Makefile.

	Find Verilog Macros and change it to
"LVDS=1|RX_DSP0_MODULE=custom_dsp_rx|RX_DSP1_MODULE=custom_dsp_rx|TX_DSP0_MODULE=custom_dsp_tx|TX_DSP1_MODULE=custom_dsp_tx|FIFO_CTRL_NO_TIME=1".
This defines the macros to so that the custom modules are instantiated by the
glue modules mentioned earlier.

After these changes, the two modules in custom/custom_dsp_rx.v and
custom/custom_dsp_tx.v will be instantiated. By default they are simply
pass-through. For instance, the output of RF frontend are directly connnected to
the input of DDC, and the output of DDC are directly connected to the VITA RX
module.

To integrate OpenOFDM, we only need to insert it after the DDC but before
VITA RX module. That is, the sample_in/sample_in_strobe of the dot11
module should be connected to the ddc_out/ddc_out_strobe signal.

Also note that two receive chains are defined in u2plus_core module, so that
the two antenna ports can be configured in TX/RX or RX/RX mode. To save FPGA
resource, you may want to comment out one of the RX chains to make more room for
OpenOFDM.

Index

 _static/minus.png

_static/ajax-loader.gif

_static/comment-close.png

_static/plus.png

_images/training.png
8+8=16us

[+
10x08=8ps | 2x08+2x32=80ps | 08+32-40ps | 08+3240ps] 08+32-40ps

FI TT 11T T 11 f T T T T T
J Gty tytstg ty tg [911%012 I T T, GIISIGNAL | GI| Data 1 | Gl| Data2
) I T S S T | 1 I

- e > < > <

ignal Detect, Coarse Freq. Channel and Fine Frequency ~ RATE SERVICE + DATA ~ DATA
AGC, Diversity Offset Estimation g /pe oo LENGTH
Selection Timing Synchronize T

_images/subcarrier.png
-26 -21 -7 DC 7 21 26

\

Y

DUnused I Data IPilot 20MHZz

_images/raw_fft.png
150000

100000

50000

—50000

—100000

—150000
—150000 -100000 —50000 0 50000 100000 150000

_images/short_preamble.png
00000

00000

000000

000000
0

l

llm'hﬂ !lli W W‘ ll ’L

llll"

¥

.{.‘|l‘

_images/match_size.png
QMODN0M NOBOTNO IN O N O 1N O VDM CWNANITD
RAEEON HHOOS00 N N M M O O SISMNYAHOD cirrros

SOSERCS SOS5SES S 66 66 © Sttt

40 60 80 100 120 140 160

20

o

_images/deinter_lut.png
addra —

addrb —

48/52

bita

bitb
/

21

Look Up Table Entry Format

BASE ADDR
(32 Entry)

) ‘/////////

6 Mbps

-

Permutation Buffer
(48/52)x6

6

3

3

9 Mbps

‘> done i

54 Mbps

MCS 0

MCS 1

Look Up Table

MCS 7

22B Wide

Padding

_images/cons_w_coarse_fine_pilot.png
15

10
L] L J

05
L J L

0.0
L 4 L

-0.5
-1.0 1) ®

-15
°15 -1.0 —05 0.0 0.5 1.0

15

_images/ht_sig_crc.png
The feedback term is setto 0

to
0 during the shifting out of the resuit
c c c c c
7 6 5 3 0

> Serial Output

_images/lts_16.png
15000

10000
5000

PG P P
A R 8

100

nav.xhtml

 Table of Contents

 		OpenOFDM: Synthesizable, Modular Verilog Implementation of 802.11 OFDM Decoder

 		Overview

 		Top Level Module

 		Project Structure

 		Sample File

 		Packet Detection

 		Power Trigger

 		Short Preamble Detection

 		Frequency Offset Correction

 		Coarse CFO Correction

 		Fine CFO Correction

 		Symbol Alignment

 		FFT

 		Sub-carrier Equalization and Pilot Correction

 		Sub-carrier Structure

 		Sub-Carrier Equalization

 		Residual Frequency Offset Correction

 		Decoding

 		Demodulation

 		Deinterleaving

 		Viterbi Decoding

 		Descrambling

 		SIGNAL and HT-SIG

 		Legacy SIGNAL

 		HT-SIG

 		Setting Registers

 		Verilog Hacks

 		Magnitude Estimation

 		Phase Estimation

 		Rotation

 		Integration with USRP

 		USRP N2x0 FPGA Overview

 		Enable Custom Modules

_images/ht_sig.png
Modulation and Coding
Scheme
LSB MSB

of1]2]|3]4]s]s

HT Length
LsB MSB
8| 9 |10]11]12]13]14]15]16]17| 18] 19]20|21| 22|23

~ CBW 20/40

HT-SIG,
K
b
Q
(]
c
8
[}
f=
5
o | T 2 o kel
A 8191¢, CRC Tail Bits
= =l
s (% c| P o O | _QE
2lzlg|g| & |9]2|58 co
6|2 |C |2 H&| 25 | ¢
ol1]2]3 ﬁufs 6|7 8|9 |10]11]12]13]14]15] 16|17 | 18] 19] 20|21 | 22|23
/ HT-SIG,
LSB LSB

_images/scrambler.png
Data In

Descrambled
Data Out

_images/signal.png
RATE LENGTH SIGNAL TAIL
(4 bits) (12 bits) (6 bits)

R1 R2 R3 R4| R|LSB MSB| P 0 <07 <07 “0” 0™ <0
01 [2]3 |4 [5]6]7[8 |9 [10]11[12[13 |14 |15 [16 |17 [18 [19 20 [21 [22]23

Transmit Order

_images/dot11.png
clock
enable
reset

set_stb
set_addr
set_data

sample_in
sample_in_stb

pkt_begin
pkt_ht
pkt_rate
pkt_len

byte_out_stb
byte_out

fcs_out_stb
fcs_ok

_images/cons.png

_images/ht_sig_bpsk.png

_images/pilot_fft.png
15

10 Py @
05
) ®
0.0
& ®
—05
-10 k- &
-15
215 = 05 0.0 05 10

15

_images/corr.png
10000

5000

-5000

—10000

—15000

12

1.0
0.8
0.6
0.4
0.2

0.0
0 50 100 150 200 250 300

_images/lts.png
15000

10000
5000

-5000
10000

15000

50000

40000

_images/ht_ppdu.png
Format of Data field SERVICE | Scrambled | 6Nes | Pad
(non LDPC case only) 16 bits PSDU Tail bits | bits
Non-HT PPDU
8ps 8ps aps
/—)H—)%’_A\
L-STF L-LTF L
SIG
HT-mixed format PPDU
Data HT-LTFs Extension HT-LTFs
8ps 8ps 4ps 8us 4ps dpsperLTF 4ps per LTF
= HT- [HIT- HT- [HIT- HT-
LSTF WTF | o | nTsie | ST [l O | e || O Data
HT-greenfield format PPDU
DataHT-LTFs Extension HT-LTFs
8ps 8ps 8us 4ps per LTF 4ps per LTF
HT- HT- [HT- HT-
HT-GF-STF | HT-LTF1 wrsie | (e [O | e || e Data

_images/quadrant.png

_images/lts_fft_iq.png
40000

30000

20000

10000

—10000

—20000

—30000

—40000

—100000

—50000 0 50000 100000

150000

_images/mod.png
by
u
0 1
ﬁ——»—»{
r
QPSK
QA
01 11

64-QAM Q, b 23 bybs
000100 001100 011100 010100 | 110100 111100 101 100 100 100
000.101 001'101 o1 I.IOI OIO.IOI IIO.IOI III.IOI IOI.IOI 100.101
000111 001111 OIL111 010111 | 110111 111111 101 111 100 111
000110 001110 011110 010110 | 110110 111110 101 110 100 110

— — — 2 + = =+
000010 001010 011010 010010 |[110010 111010 101010 100010
000011 001011 011011 010011 |[110011 111011 101011 100011
000'001 001.001 OII.OOI 0]0.001 110.001 III'OOI 101.001 100.001
000000 001000 011000 010000 [110000 111000 101000 100 000

_images/cons_w_coarse.png
15

#
]
v,
4
S
« ;* ;
e

15

1.0

-0.5 0.0 0.5

-1.0

=15

_images/complex_to_mag_wave.png
295 ns

clock=1

enabl
input_strobe

422905+ far719324
8528+ |-9995410

abs_q[31:0
max[31:0

min[31:0] =8852849
mag_st!
31:0] =44508067

2960 ns

farmsna
fsossato

2970 ns

farmsna
fsossato

12960 ns

se218176

_images/cons_w_coarse_fine.png
15

10 & »
05
e)
0.0
« @
-05
-1.0 L d
-15
215 —10 ~05 0.0 05 10

15

_images/lts_fft.png
15
1.0
0.5
0.0
-0.5
-1.0
=15

150000
100000
50000

0
—50000
—100000

80000
60000
40000
20000
0
—20000
—40000
—60000

—80000
)

10 20 30 40 50 60 70

_images/sync_short.png
complex_mult

prod_avg_mag (32)

complex_to_mag

prod_avg_mag
>
0.75 * mag_sq_avg

<I, Q> (32) <I’, -Q’> (32)
delay_sample (16)
prod (64)
rod_avg (64
— moving_avg (16) prod_ave (64)
mag_sq (32)
>

complex_to_mag_sq

moving_avg (16)

_images/norm_fft.png
15

#
]
v,
4
S
« ;* ;
e

15

1.0

-0.5 0.0 0.5

-1.0

=15

_static/file.png

_static/down.png

_static/up.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down-pressed.png

